

Intelligent Automation

TUVOUPA.AU^ { aaaaAig aAO|^8daaAO|aaaO|aaaaO| aaaaAO|aaaaa

@bYUf'; i]XYs
9'YWf]W5Wf Uhcfs
A chcfgž Gearheads
Air Cylinders
DbYi a Uh]WJ U'j Yg
: F@gž Fittingsž Hi VY
Vacuum Equipment

ORIGA SYSTEM PLUS OSP-P

Pneumatic Drives

the ORIGINAL rodless cylinders

Stainless steel sealing system

- Low friction for longest seal life (8,000 km)
- Extreme temperatures (- 40°C to + 120°C)
- Widest operating speed range (0.005 m/s to 30 m/s)
- Suitable for extremely demanding environments

Broadest size range

- Diameters: 10, 16, 25, 32, 40, 50, 63, 80 mm
- Any length of stroke up to 10,000 mm (up to 41,000 mm on request)

Most choice of integrated options

Mountings, brakes, sensors, encoders, control valves, extended cushioning, shock absorbers, intermediate stops

...Simply the first modular guide options for the widest scope of applications

OSP-P Standard Internal Guide Single, Tandem, Duplex, Low Cost

POWERSLIDE V-Roller Guide

Robust, Harsh Environments

PROLINE Roller Guide

Smooth, Quiet, Highly Dynamic

STARLINE Recirculating Ball Bearing Guide

Precision, Highly Rigid, Variable Stops

HD Guide Heavy Duty, Twin Rail

Max. Precision, Loading, Rigidity, Stability

Special Versions

for use in EX-Areas

for clean room applications certified to

stainless steel version for special applications

with special pneumatic cushioning system for cycle time optimization, for Ø 16 to 50 mm - on request

high temperature version for temperatures up to +120°C

low temperature version for temperatures down to -40°C

slow speed version v = 0.005 - 0.2 m/s

high speed version $v_{max} = 30 \text{ m/s}$

cylinders with extremely long strokes up to 41 m

Why does Origa offer the best Rodless Cylinders?

Action Force [N] values for D.25 mm

ORIGA

Competitors

205 - 230 N

Max. Stroke [mm]

ORIGA

up to 41,000 mm

Competitors

5,000 - 8,000 mm

Min. Speed [m/s]

ORIGA

0.005 m/s

Competitors

0.1 m/s

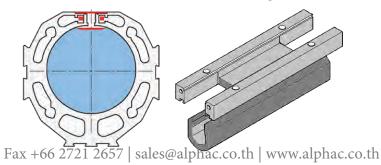
Max. Speed [m/s]

ORIGA

30 m/s

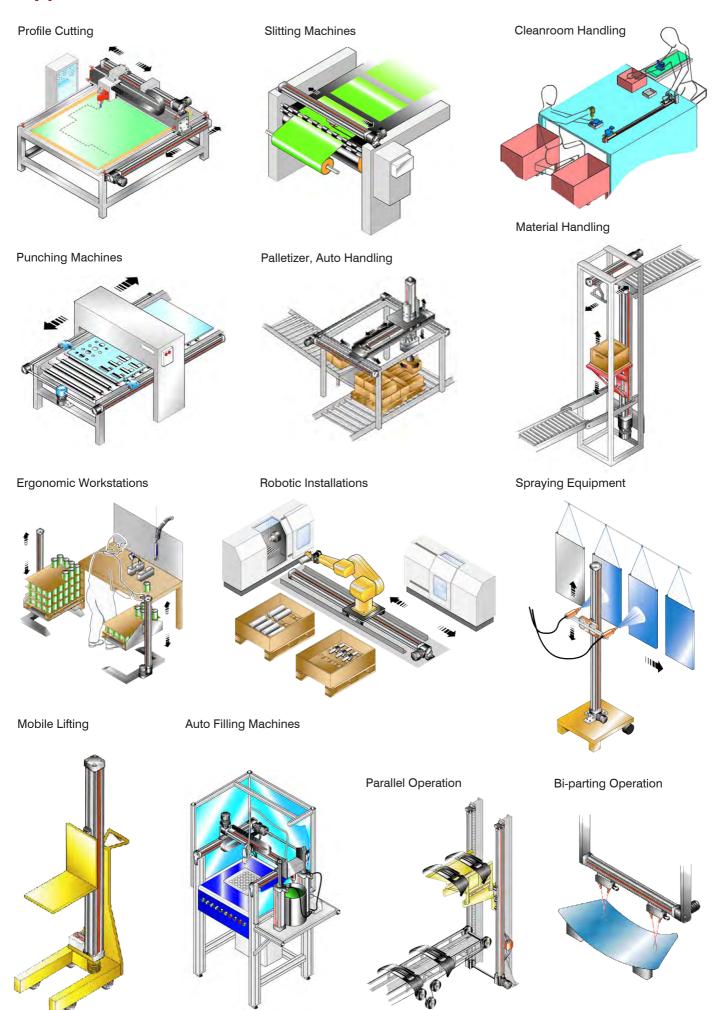
Ò

Competitors


3 - 10 m/s

Temp. Range [°C]

ORIGA Competitors


40 to 120°C -20 to 80°C

ORIGA Stainless Steel Sealing Bands

Applications for ORIGA

Active Brake

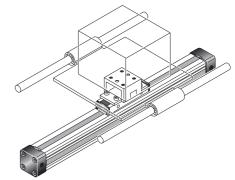
Brake by Compressed Air

Passive Brake

Release by Compressed Air

DUPLEX CONNECTION

The duplex connection combines two OSP-P cylinders of the same size into a compact unit with high performance.

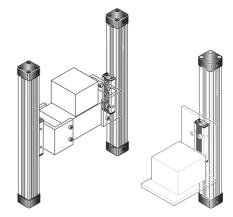


MOUNTINGS for OSP-P10 to P80

CLEVIS MOUNTING

Carrier with tolerance and parallelism compensation for driving loads supported by external linear guides.

END-FACE AIR CONNECTION


To solve special installation problems.

END CAP MOUNTING

For end-mounting of the cylinder.

BOTH AIR CONNECTIONS AT ONE END

For simplified tubing connections and space saving.

MID-SECTION SUPPORT

For supporting long cylinders or mounting the cylinder by its dovetail rails.

INTEGRATED VOE VALVES

The complete compact solution for optimal cylinder control.

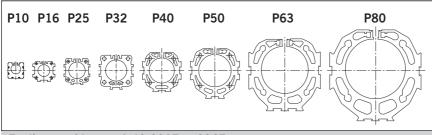
INVERSION MOUNTING

The inversion mounting, transfers the driving force to the opposite side, e. g. for dirty environments.

ACCESSORIES

PROXIMITY SENSORS TYPE RST AND EST

For electrical sensing of end and intermediate piston positions.

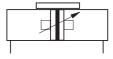


Char	racteristics			Press	sures quoted as gauge pressure
Char	racteristics	Symbol	Unit	Desc	ription
Gene	eral Features				
Туре	:			Rodl	ess cylinder
Serie	es			OSP-	-P
Syst	em			Doub posit	ole-acting, with cushioning, ion sensing capability
Mou	nting			See	drawings
Air C	Connection			Threa	aded
Amb temp rang	perature	T _{min} T _{max}	°C °C	-10 +80	Other temperature ranges on request
Weig	ght (mass)		kg	See 1	table below
Insta	allation			In ar	ny position
Med	ium			Filter (othe	red, unlubricated compressed air er media on request)
Lubr	rication			(add not r	nanent grease lubrication itional oil mist lubrication equired) on: special slow speed grease
	Cylinder Profile			Anoc	lized aluminium
	Carrier (piston)			Anoc	lized aluminium
_	End caps			Alum	ninium, lacquered / Plastic (P10)
Material	Sealing bands			Corro	osion resistant steel
Mat	Seals			NBR	(Option: Viton®)
	Screws				anized steel on: stainless steel
	Dust covers, wipers			Plast	iic
Max.	operating pressure	p _{max}	bar	8	

Weight (mass) kg

Cylinder series		Mass) kg
(Basic cylinder)	At 0 mm stroke	per 100 mm stroke
OSP-P10	0.087	0.052
OSP-P16	0.22	0.1
OSP-P25	0.65	0.197
OSP-P32	1.44	0.354
OSP-P40	1.95	0.415
OSP-P50	3.53	0.566
OSP-P63	6.41	0.925
OSP-P80	12.46	1.262

Size Comparison


For **linear guides** see 1.40.001E to 006E For **magnetic switches** see 1.45.100E, 1.45.104E, 1.45.105E For **mountings** and **accessories** see 1.45.001E to 009E

Rodless Pneumatic Cylinder

ø 10-80 mm

Series OSP-P..

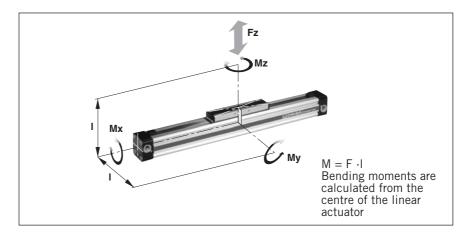
Standard Versions:

- Double-acting with adjustable end cushioning
- With magnetic piston for position sensing

Special Versions:

- with special pneumatical cushioning system (on request)
- Clean room cylinders (see data sheet 1.10.003E)
- ATEX-Version $\langle Ex \rangle$ (see data sheet 1.10.020E)
- Stainless steel screws
- Slow speed lubrication
- Viton® seals
- Both air connections on one end
- Air connection on the end-face
- Integrated Valves

- End cap can be rotated 4 x 90° to position air connection as desired
- Free choice of stroke length up to 6000 mm (longer strokes on request)

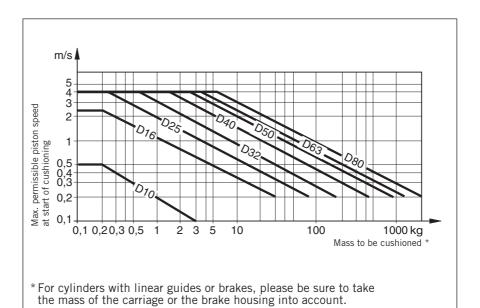

Loads, Forces and Moments

Choice of cylinder is decided by:

- Permissible loads, forces and moments
- Performance of the pneumatic end cushions. The main factors here are the mass to be cushioned and the piston speed at start of cushioning (unless external cushioning is used, e. g. hydraulic shock absorbers).

The adjacent table shows the maximum values for light, shock-free operation, which must not be exceeded even in dynamic operation. Load and moment data are based on speeds $v \le 0.5$ m/s.

When working out the action force required, it is essential to take into account the friction forces generated by the specific application or load.


Cylinder- Series [mm Ø]	Theoretical Action Force at 6 bar [N]	effektive Action Force F _A at 6 bar [N]	max Mx [Nm]	k. Mome My [Nm]	nts Mz [Nm]	max. Load F [N]	Cushion Length [mm]
OSP-P10	47	32	0.2	1	0.3	20	2.5 *
OSP-P16	120	78	0.45	4	0.5	120	11
OSP-P25	295	250	1.5	15	3	300	17
OSP-P32	483	420	3	30	5	450	20
OSP-P40	754	640	6	60	8	750	27
OSP-P50	1178	1000	10	115	15	1200	30
OSP-P63	1870	1550	12	200	24	1650	32
OSP-P80	3016	2600	24	360	48	2400	39

^{*} A rubber element (non-adjustable) is used for end cushioning. To deform the rubber element enough to reach the absolute end position would require a Δp of 4 bar!

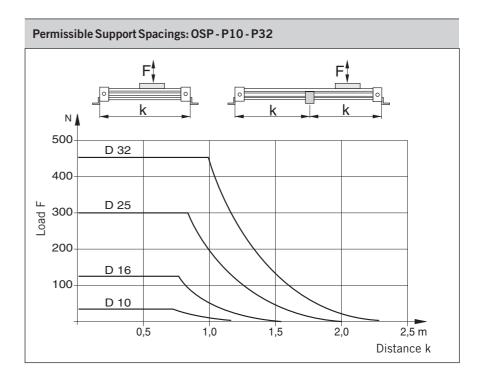
Cushioning Diagram

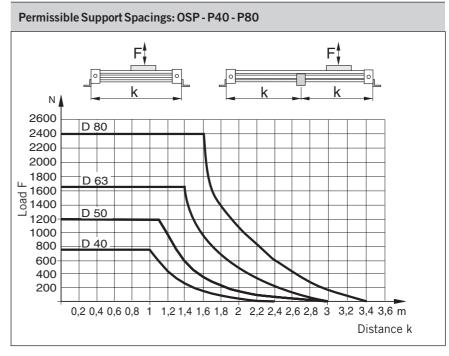
Work out your expected moving mass and read off the maximum permissible speed at start of cushioning. Alternatively, take your desired speed and expected mass and find the cylinder size required.

Please note that piston speed at start of cushioning is typically ca. 50 % higher than the average speed, and that it is this higher speed which determines the choice of cylinder. If these maximum permissible values are exceeded, additional shock absorbers must be used.

If the permitted limit values are exceeded, either additional shock absorbers should be fitted in the area of the centre of gravity or you can consult us about our special cushioning system

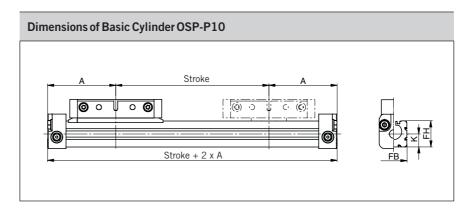
- we shall be happy to advise you on your specific application.


Mid-Section Supports


To avoid excessive bending and oscillation of the cylinder, mid-section supports are required dependent on specified stroke lengths and applied loads. The diagrams show the maximum possible support spacings depending on the load.

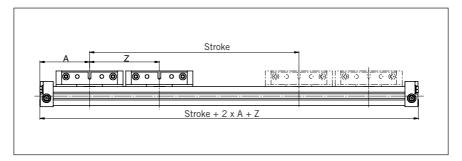
Bending up to max. 0.5 mm is per-

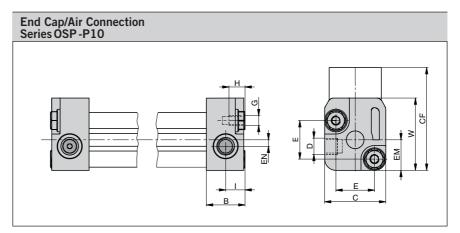
Bending up to max. 0.5 mm is permissible between supports. The midsection supports are clamped on to the dovetail profile of the cylinder tube. They are also able to take the axial forces.

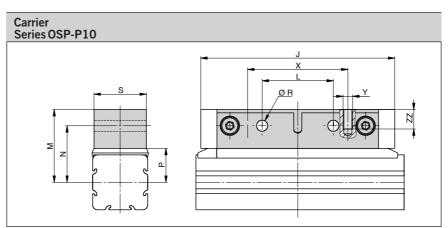

For types and dimensions see 1.45.004E.

Cylinder Stroke and Dead Length A

- Free choice of stroke length up to 6000 mm in 1 mm steps.
- Longer strokes on request.

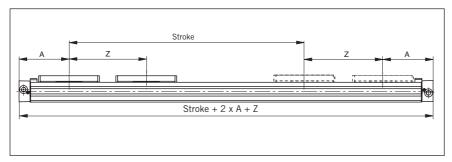

Tandem Cylinder


Two pistons are fitted: dimension "Z" is optional. (Please note minimum distance "Zmin").


- Free choice of stroke length up to 6000 mm in 1 mm steps.
- Longer strokes on request.
- Stroke length to order is stroke + dimension "Z"

Please note:

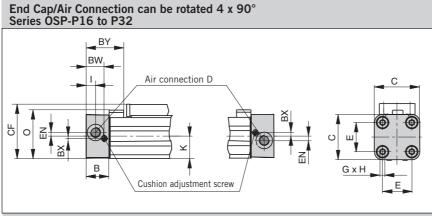
To avoid multiple actuation of magnetic switches, the second piston is not equipped with magnets.

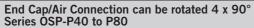


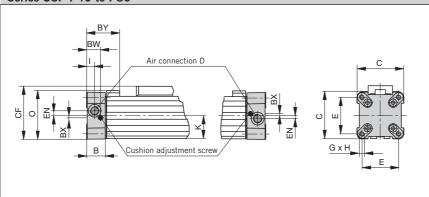
Dimension	Tabl	e (m	ım)																							
Cylinder Series	Α	В	С	D	E	G	Н	I	J	K	L	М	N	P	R	S	W	X	Υ	Z min	CF	EM	EN	FB	FH	ZZ
OSP-P10	44.5	12	19	M5	12	М3	5	6	60	8.5	22	22.5	17.5	10.5	3.4	16	22.5	31	М3	64	32	9.5	2	17	17	6

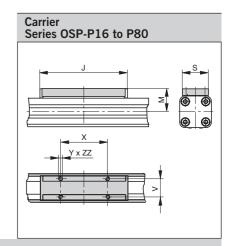
Cylinder Stroke and Dead Length A

- Free choice of stroke length up to 6000 mm in 1 mm steps.
- Longer strokes on request.

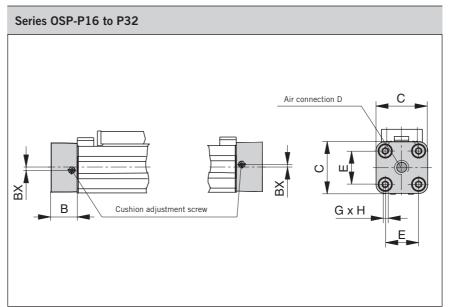

Tandem Cylinder

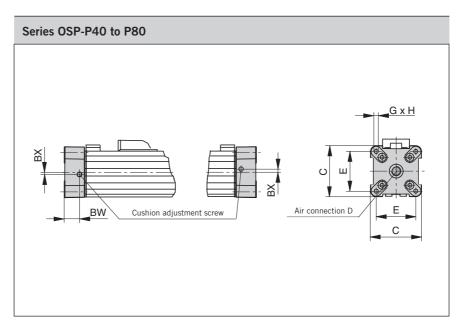

Two pistons are fitted: dimension "Z" is optional. (Please note minimum distance "Zmin").


- Free choice of stroke length up to 6000 mm in 1 mm steps.
- Longer strokes on request.
- Stroke length to order is stroke + dimension "Z"

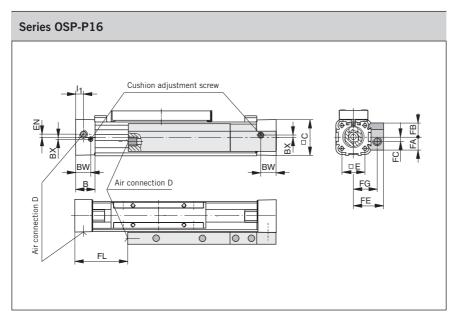

Please note:

To avoid multiple actuation of magnetic switches, the second piston is not equipped with magnets.


Dimension Table (mm)


Cylinder Series	A	В	С	D	Ε	G	Н	I	J	K	M	0	S	V	X	Y	Z min	BW	ВХ	ВҮ	CF	EN	FB	FH	ZZ
OSP-P16	65	14	30	M5	18	М3	9	5.5	69	15	23	33.2	22	16.5	36	M4	81	10.8	1.8	28.4	38	3	30	27.2	7
OSP-P25	100	22	41	G1/8	27	M5	15	9	117	21.5	31	47	33	25	65	M5	128	17.5	2.2	40	52.5	3.6	40	39.5	8
OSP-P32	125	25.5	52	G1/4	36	M6	15	11.5	152	28.5	38	59	36	27	90	M6	170	20.5	2.5	44	66.5	5.5	52	51.7	10
OSP-P40	150	28	69	G1/4	54	M6	15	12	152	34	44	72	36	27	90	M6	212	21	3	54	78.5	7.5	62	63	10
OSP-P50	175	33	87	G1/4	70	M6	15	14.5	200	43	49	86	36	27	110	M6	251	27	-	59	92.5	11	76	77	10
OSP-P63	215	38	106	G3/8	78	M8	21	14.5	256	54	63	107	50	34	140	M8	313	30	-	64	117	12	96	96	16
OSP-P80	260	47	132	G1/2	96	M10	25	22	348	67	80	133	52	36	190	M10	384	37.5	-	73	147	16.5	122	122	20

Air Connection on the End-face


In some situations it is necessary or desirable to fit a special end cap with the air connection on the end-face instead of the standard end cap with the air connection on the side. The special end cap can also be rotated 4 x 90° to locate the cushion adjustment screw as desired. Supplied in pairs.

Dimension 1	Table (mm)							
Cylinder Series	В	С	D	Е	G	Н	вх	BW
OSP-P16	14	30	M5	18	M3	9	1.8	10.8
OSP-P25	22	41	G1/8	27	M5	15	2.2	17.5
OSP-P32	25.5	52	G1/4	36	M6	15	2.5	20.5
OSP-P40	28	69	G1/4	54	M6	15	3	21
OSP-P50	33	87	G1/4	70	M6	15	_	27
OSP-P63	38	106	G3/8	78	M8	21	_	30
OSP-P80	47	132	G1/2	96	M10	25	_	37.5

Series OSP-P25 Air connection D $G \times H$ * Versions of Air Connection Positions: $1 \to 1$ or $2 \to 2$

Series OSP-P32 to P80 OSP-P40 to P80 OSP-P32 Air connection D G x H G x H G x H G x H G x H

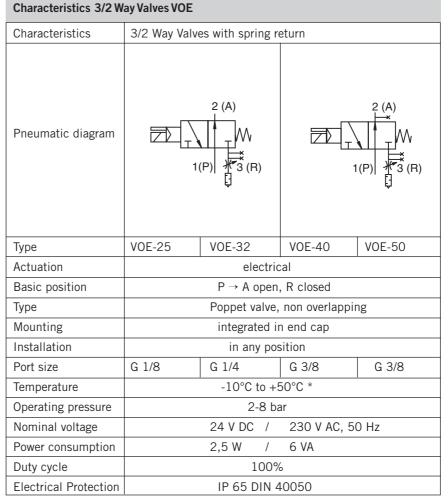
Both Air Connections at One End

A special end cap with both air connections on one side is available for situations where shortage of space, simplicity of installation or the nature of the process make it desirable. Air supply to the other end is via internal air passages (OSP-P25 to P80) or via a hollow aluminium profile fitted externally (OSP-P16).

In this case the end caps cannot be rotated.

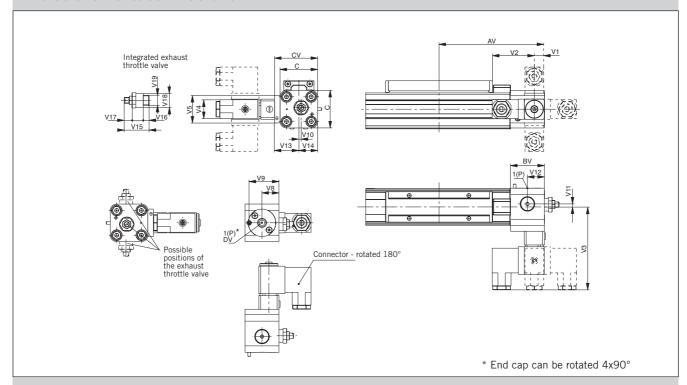
Please note: When combining the OSP-P16 single end porting with inversion mountings, RS magnetic switches can only be mounted directly opposite to the external air-supply profile.

Dimension Ta	Dimension Table (mm)																			
Cylinder Series	В	С	D	E	G	н	I ₁	I ₂	вх	BW	EN	EN ₁	EN ₂	FA	FB	FC	FE	FG	FL	FN
OSP-P16	14	30	M5	18	МЗ	9	5.5	-	1.8	10.8	3	-	-	12.6	12.6	4	27	21	36	_
OSP-P25	22	41	G1/8	27	M5	15	9	-	2.2	17.5	-	3.6	3.9	_	_	-	-	-	_	_
OSP-P32	25.5	52	G1/8	36	M6	15	12.2	10.5	-	20.5	_	-	-	-	_	_	-	-	-	15.2
OSP-P40	28	69	G1/8	54	M6	15	12	12	-	21	-	-	-	-	-	-	-	-	-	17
OSP-P50	33	87	G1/4	70	M6	15	14.5	14.5	_	27	_	_	_	_	_	_	-	_	_	22
OSP-P63	38	106	G3/8	78	M8	21	16.5	13.5	-	30	-	-	-	-	-	-	-	-	-	25
OSP-P80	47	132	G1/2	96	M10	25	22	17	-	37.5	_	-	-	_	_	_	-	-	_	34.5

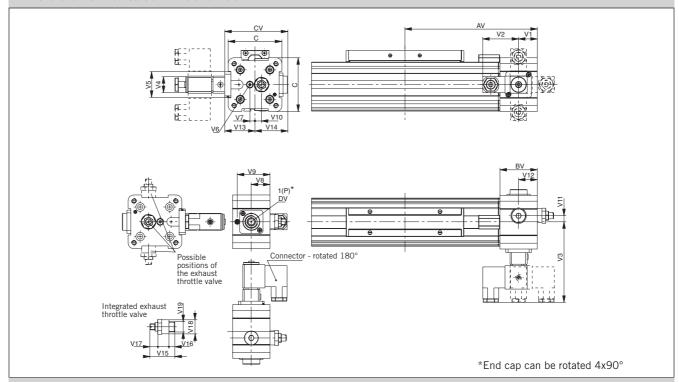

Integrated 3/2 Way Valves VOE

For optimal control of the OSP-P cylinder, 3/2 way valves integrated into the cylinder's end caps can be used as a compact and complete solution. They allow for easy positioning of the cylinder, smooth operation at the lowest speeds and fast response, making them ideally suited for the direct control of production and automation processes.

Characteristics:


- Complete compact solution
- Various connection possibilities:
 Free choice of air connection with rotating end caps with VOE valves, Air connection can be rotated 4 x 90°,
- Solenoid can be rotated 4 x 90°, Pilot valve can be rotated 180°
- High piston velocities can be achieved with max. 3 exhaust ports
- Minimal installation requirements
- Requires just one air connection per valve
- Optimal control of the OSP-P cylinder
- Excellent positioning characteristics
- Integrated operation indicator
- Integrated exhaust throttle valve
- Manual override indexed
- Adjustable end cushioning
- Easily retrofitted please note the increase in the overall length of the cylinder!

^{*} other temperature ranges on request


Dimensions VOE Valves OSP-P25 and P32

Dimension Table (mm)

Cylinder Series	AV	BV	С	cv	DV	V1	V2	V3	V4	V5	V8	V 9	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19
OSP-P25	115	37	41	47	G1/8	11	46	90.5	22	30	18.5	32.5	2.5	3.3	18.5	26.5	20.5	24	5	4	14	G1/8
OSP-P32	139	39.5	52	58	G1/4	20.5	46	96	22	32	20.5	34.7	6	5	20.5	32	26	32	7.5	6	18	G1/4

Dimensions VOE Valves OSP-P40 and P50

Dimension Table (mm)

Cylinder Series	AV	в۷	С	cv	DV	V1	V2	V3	V4	V5	V6	V7	V8	V 9	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19
OSP-P40	170	48	69	81	G3/8	24	46	103	22	33	M5	6.7	24	42	8.3	8.3	24	39	42	32	7.5	6	18	G1/4
OSP-P50	190	48	87	82	G3/8	24	46	102	22	33	M5	4.5	24	42	12.2	12.2	24	38	44	32	7.5	6	18	G1/4